"Introduction to Applied Bayesian Statistics and Estimation for Social Scientists" covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models t[...]
This is an introduction to Bayesian statistics and decision theory, including advanced topics such as Monte Carlo methods. This new edition contains several revised chapters and a new chapter on model choice.[...]
This book has been written for undergraduate and graduate students in various disciplines of mathematics. The authors, internationally recognized experts in their field, have developed a superior teaching and learning tool that makes it easy to grasp new concepts and apply them in practice. The book[...]
Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is large[...]
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for stat[...]
A self-contained introduction to probability, exchangeability and Bayes rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov cha[...]
Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network mod[...]
The second edition of this book includes revised, updated, and additional material on the structure, theory, and application of classes of dynamic models in Bayesian time series analysis and forecasting. In addition to wide ranging updates to central material, the second edition includes many more e[...]
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on[...]
The interest in Bayesian statistics among theoretical and applied statisticians has increased dramatically. This classic text and reference book remains one of the most important references.[...]
This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to dea[...]
This volume provides the theories, methods and tools necessary for practical forecasting and analysis of time series.[...]
This accessible reference includes selected contributions from Bayesian Thinking - Modeling and Computation, Volume 25 in the Handbook of Statistics Series, with a focus on key methodologies and applications for Bayesian models and computation. It describes parametric and nonparametric Bayesian meth[...]
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It [...]
This book provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementations, with an emphasis on healthcare techniques. Through examples, exercises, and both introductory and more advanced chapters, this book provides an invaluable understanding[...]
Bayesian Statistical Modelling, Second Edition, provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets.[...]
Winner of the 2008 Ziegel Prize for outstanding new book of the year Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors in[...]
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. In Bayesian statistics the rules of probability are used to make inferences about the parameter. Prior information about the parameter an[...]