Statistical theory is primarily a product of the twentieth century. Frequentist thinking has prevailed over Bayesian primarily because of the practical difficulty of fitting all but the simplest Bayesian models. This book takes the reader into the domain of Bayesian inference where complex hierarchi[...]
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. "Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS" provides an accessible approach to Bayesian da[...]
Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS and its open-source sister OpenBugs is currently the only flexible and general-purpose program available with which the average ecologist can conduct standa[...]
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan provides an accessible approach to Bayesian data analy[...]
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the pop[...]
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their da[...]
Master Bayesian Inference through Practical Examples and Computation-Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples[...]
Bayesian Statistics is a dynamic and fast-growing area of statistical research with wide-ranging and far-reaching applications across science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of techniques and application areas.[...]
Are people rational? This question was central to Greek thought and has been at the heart of psychology and philosophy for millennia. This book provides a radical and controversial reappraisal of conventional wisdom in the psychology of reasoning, proposing that the Western conception of the mind a[...]
Bayesian nets are widely used in artificial intelligence as a calculus for causal reasoning, enabling machines to make predictions, perform diagnoses, take decisions and even to discover causal relationships. But many philosophers have criticised and ultimately rejected the central assumption on whi[...]
Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic s[...]
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader[...]
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on si[...]
Bayesian statistics is currently undergoing something of a renaissance. At its heart is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. It is an approach that is ideally suited to making[...]
Probabilistic models have much to offer to philosophy. We continually receive information from a variety of sources: from our senses, from witnesses, from scientific instruments. When considering whether we should believe this information, we assess whether the sources are independent, how reliable [...]
Several recent advances in smoothing and semiparametric regression are presented in this book from a unifying, Bayesian perspective. Simulation-based full Bayesian Markov chain Monte Carlo (MCMC) inference, as well as empirical Bayes procedures closely related to penalized likelihood estimation and [...]
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in s[...]
A Bayesian approach can contribute to an understanding of the brain on multiple levels, by giving normative predictions about how an ideal sensory system should combine prior knowledge and observation, by providing mechanistic interpretation of the dynamic functioning of the brain circuit, and by su[...]
A Bayesian approach can contribute to an understanding of the brain on multiple levels, by giving normative predictions about how an ideal sensory system should combine prior knowledge and observation, by providing mechanistic interpretation of the dynamic functioning of the brain circuit, and by su[...]
The problem of how to estimate probabilities has interested philosophers, statisticians, actuaries, and mathematicians for a long time. It is currently of interest for automatic recognition, medical diagnosis, and artificial intelligence in general. The main purpose of this monograph is to review ex[...]
This book provides the philosophical, statistical and psychological foundation for the evaluation of informed hypotheses.[...]
Offers an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. This book focuses on probabilistic graphical models. It deals with decision graphs, and introduces Markov decision process.[...]
Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algor[...]