This classic work is now available in an unabridged paperback edition. The Second Edition retains all the characterisitcs that made the first edition so popular: brilliant exposition, the flexibility permitted by relatively self-contained chapters, and broad coverage ranging from topics in the Eucli[...]
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book i[...]
This classic work offers scores of stimulating, mind-expanding games and puzzles: arithmetical and geometrical problems, chessboard recreations, magic squares, map-coloring problems, cryptography and cryptanalysis, much more. "A must to add to your mathematics library." -- "The Mathematics Teacher."[...]
Foremost book available on polytopes, incorporating ancient Greek and most modern work done on them. Beginning with polygons and polyhedrons, the book moves on to multi-dimensional polytopes in a way that anyone with a basic knowledge of geometry and trigonometry can easily understand. Definitions o[...]
A reissue of Professor Coxeter's classic text on non-euclidean geometry.
Among the many beautiful and nontrivial theorems in geometry found in Geometry Revisited are the theorems of Ceva, Menelaus, Pappus, Desargues, Pascal, and Brianchon. A nice proof is given of Morley's remarkable theorem on angle trisectors. The transformational point of view is emphasized: reflectio[...]